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Abstract 

This paper presents a volume of fluid (VOF) method to solve sloshing problem in 
a rectangular tank. Navier-Stokes equations are solved by using an implicit 
time scheme finite volume method, an explicit time split scheme, which requires 
a small time step, is used for the volume fraction equation. In addition, our VOF 
method is able to preserve not only the volume but also remove the flotsam and 
jetsam problem. 
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1. Introduction 

Sloshing is the periodic motion of the free surface of a liquid in 
partially tank. The inertial load exerted by the fluid is time-dependent 
and can be greater than the load exerted by a solid of the same mass. 
This makes analysis of sloshing especially important for transportation 
and storage tanks. Due to its dynamic nature, sloshing can strongly affect 
performance and behaviour of transportation vehicles, especially tankers 
filled with oil. 

The problem of liquid sloshing in moving or stationary containers 
remains of great concern to aerospace, civil, and nuclear engineers, 
physicists, designers of road tankers and ship tankers. Civil engineers 
and seismologists have been studying liquid sloshing effects on large 
dams, oil tanks, and elevated water towers under ground motion. Since 
the early 1960s, the problem of liquid sloshing dynamics has been of 
major concern to aerospace engineers studying the influence of liquid 
propellant sloshing on the flight performance of jet vehicles. Large liquid 
movement creates highly localized impact pressure on tank walls, which 
may in turn cause structural damage and may even create sufficient 
moment to effect the stability of the vehicle, which carries the tank such 
in a tanker or spacecraft [1] and [2]. 

Sloshing is not a gentle phenomenon even at very small amplitude 
excitations. The fluid motion can become very non-linear, surface slopes 
can approach infinity and the fluid may encounter the tank top in an 
enclosed tanks. Hirt and Nichols [3] developed a method known as the 
volume of fluid (VOF). The flexibility of this method suggests that it 
could be applied to the numerical simulation of sloshing and is therefore 
used as a base in this study. 

On the other hand, analytic results of sloshing problems are already 
found by many researchers. Some comprehensive reviews and discussions 
of the analytic and experimental studies of liquid sloshing are provided in 
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[4], [5], and [6]. The advent of high speed computers, the subsequent 
maturation of computational techniques for fluid dynamic problems and 
other limitations mentioned above have allowed a new, and powerful 
approach to sloshing; the numerical approach [7], [8], [9], and [10]. 

Numerical analysis of free surface (interface) fluid flow is a 
particularly difficult problem because the location of the free surface is 
unknown and has to be determined as part of the solution. One possible 
way to solve this problem is to linearize the free surface boundary 
conditions around a known base solution and introduce a perturbation 
due to the body and/or the waves. A review of linearization is presented 
in [11], [12], and [13]. However, in most codes for viscous flow, there are 
two broad approaches used, and following the nomenclature of Ferziger 
and Perić: interface tracking method and interface capturing methods. 

In interface tracking methods (Lagrangian methods), the free surface 
is located at one boundary of the mesh, and the mesh deforms as the free 
surface moves. It is an explicit representative approach of the surface. 
They define the free surface as a sharp interface whose motion is 
followed. This approach includes the “height function method”, where the 
free surface position is given by the values of a continuous function h, 
called height function, which is the distance between the free surface and 
a reference surface [11] and [14]. The principal limitation of Lagrangian 
methods is the inability to handle complex surface geometries and 
overturning waves. 

Interface capturing methods are characterized by an implicit 
representation of the interface, which is tracked as part of the solution 
algorithm. The computations are performed on a fixed grid, which 
extends beyond the free surface. These methods are Marker-and-Cell 
method [15], [16], and [7]; Level-set method [19], [20], and [21]; Volume of 
fluid method [22], [23], [24], and [25]. They have a wide range of 
applications including problems in fluid mechanics, combustion, 
manufacturing of computer chips, computer animation, image processing, 
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structure of snowflakes, the shape of soap bubbles, and satellite 
controllability. The main drawback of these methods is the possibility of 
numerical instability, diffusivity (with blurred interface). 

The essential steps of the VOF interface method are as follows: 

First, an initial prescribed interface topology is used to compute fluid 
volume fractions in each computational cell. This task requires the 
calculation of volumes truncated by the interface in each interface cell 
(partial filled cell). Exact interface information, is then discarded in 
favour of the discrete volume fraction data. Given a velocity field 
(provided by a flow solver), interfaces are then tracked by evolving fluid 
volumes in time with the solution of an advection equation. Typically, one 
can reconstruct the interface by the straightforward SLIC (simple line 
interface calculation) methods [26] and [27] or by various PLIC 
(piecewise linear interface calculation) methods [28], [29], [30], and [31]. 
The latter methods give much better results than the former, as noted in 
the review achieved by Kothe and Rider [32]. 

2. Numerical Formulation 

2.1. Governing equations 

The motion of the unsteady, viscous, incompressible two-phase flow is 
described by the Navier-Stokes equations: 

- Continuity equation 

.0=
∂
∂

i
i

x
u   (1) 

- Momentum equations 

,1
ρ

++















∂
∂

+
∂
∂

ν
∂
∂+

∂
∂

ρ
−=

∂
∂

+
∂
∂ i

i
i

j

j
i

jij

jii fgx
u

x
u

xx
p

x
uu

t
u  (2) 

with 

( ) ,1 gl F ρ−+ρ=ρ  
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( ) .1 gl F ν−+ν=ν  (3) 

- Volume fraction equation 
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In the above equations, iu  and ig  are the Cartesian velocity and the 

gravity components in i-direction, respectively, p is the pressure. kν  and 

kρ  are the viscosity and density, respectively, of the fluid ,k  where 

g=k  for gas and l=k  for liquid. The last term if  is the surface tension 

force obtained via the continuum surface force (CSF) approach [33], 
which is active only on liquid-gas interface. The properties (density and 
viscosity coefficients) appearing in the momentum equation are 
determined by the presence of the component phase (volume fraction) F 
in each control volume, which is bounded by zero and one. 

2.2. Discretisation 

The finite volume discretisation of momentum-iu  equation is based 

on the integration over the control volume and time step. Quadratic 
upwind interpolation of convective kinetics (QUICK) scheme of Hayase et 
al. [34] is used for convective terms and central difference for diffusive 
terms and fully implicit time scheme. In order to avoid the numerical 
instability, often known as the “checkerboard problem”, an improved 
Rhie-Chow interpolation [35] is used to calculate the convective flux. The 
spatial and temporal discretisation leads to the form of linear matrix 
equations as 

,bAx =   (5) 

where 

- A  is the matrix obtained from discretisation of momentum. 

- b  is the vector which includes volume forces, extra terms of 
convective terms of high order, such as in TVD scheme [36] and [37]. 

- x  is the unknown nodal velocity vector. 
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2.3. Interface modelling 

The interface is treated as a shift in the fluid properties. Along the 
interface, the surface tension arises as the result of attractive forces 
between molecules in a fluid. Here, we use the continuum surface force 
(CSF) approach proposed in [33], which incorporates the surface tension 
as a volume force if  included in the momentum equations 

,ii Ff ∇σκ=   (6) 

where the curvature is ( )κ defined by 
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where n is the interface normal vector defined by .Fn ∇=  

Volume fractions transition abruptly across the interface, causing 
problem of accuracy when calculating the normal and the curvature. A 
solution to this problem is to first convolve F with a smooth kernel K to 

construct a smoothed or mollified function F~  
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where Ω  denotes the support of the kernel K (i.e., those points x for 
which ( ) 0≠xK ), which is typically compact (i.e., of finite extent). 

Many types of kernels have been used in the past, such as Gaussians, 
B-spline, and polynomials. Some of these kernels are radially-symmetric 
while others are products of one-dimensional function. In this paper, we 
have chosen the Peskin function [38], which is given by 
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where dim is the partial dimension, ,2hd =  with h the grid spacing, x is 
the grid coordinates, and kx  is the interface point coordinates. In this 

paper, the grid spacing is not uniform, so we have ( ).,max dydxh =  

2.4. Pressure correction simple method 

The coupling between velocity and pressure is implicitly implemented 
by an auxiliary pressure correction equation. First, given a guessed 
pressure field, one can obtain a velocity field by solving momentum 
equations. This resulting velocity field may not satisfy the continuity 
equation. To enforce the continuity conservation, a correction procedure 
is needed. Then the pressure and velocities are corrected after solving 
pressure correction equation, which is obtained by substituting the 
assumed corrected velocities into continuity equation and integrating 
over the control volume. 

2.5. Volume tracking algorithm 

Piecewise linear interface calculation (PLIC) is one of the most widely 
employed geometric interface reconstruction scheme because of its 
accuracy, compared to the other methods, such as donor acceptor and 
Euler explicit method. 

In PLIC method, the interface is approximated by a straight line of 
appropriate inclination in each cell. A typical reconstruction of the 
interface with a straight line in cell P, which yields an unambiguous 
solution, is perpendicular to an interface normal vector Pn  and delimits 

a fluid volume matching the given PF  for the cell [40] and [41]. 

A cell-centred value of the normal vector Pn  may be computed, as 

,4
wseswnen

P
nnnnn +++

=  (10) 

where ,,, eswnen nnn  and wsn  are the normal vector estimated, 

respectively, at vertices east-north, west-north, east-south, and west-
south of a rectangular cell with center P. 
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In PLIC method, the interface is approximated in each interface cell 
by a portion of a straight line in 2-D (plane in 3-D), defined by the 
equation 

,λ=+ ynxn yx   (11) 

where λ  is the interface constant ( parameter which is related to the 
smallest distance between the interface and the origin); xn  and yn  are 

the Cartesian components of normal vector .Pn  In each interface cell, the 

minimum between liquid volume lV  and gaz volume gV  is given by [42] 
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where 

( ) ( );,min;,max;; 111111 dydxdydydxdxdyndydxndx ccyx ====  

( ) ;;,min 11 dydxdyndxn yxmmc +=+=λλ−λλ=λ  and 

( ).1,min FFFc −=  

2.5.1. Volume fluxes calculation 

The flux estimation is based on the interface configuration inside the 
surface cell. The liquid volume ,Vδ  which flows through a face of a cell 

during a time step tδ  may be found using the interface parameter cλ  via 

the relation (12). For instance, the volume flux advected Vδ  during time 
tδ  through the east face of the donor cell can be found as follows: Since 

the position of the interface is known in the donor cell, that is, cλ  is 

known, then we can apply relation (12) to the sub-region with lengths 
tudx e δ−  and dy as shown by figure. From (12), we can write 

( ( ) ) .2
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When mλ≤λ 5.0  and 0<exun  

( ).tudxdyFdxdyFV ecDe δ−−=δ  (14) 

When mλ>λ 5.0  and 0<exun  

( ) ( ).1 tudxdyFdxdyFV ecDe δ−−−=δ  (15) 

When mλ≤λ 5.0  and 0≥exun  

.tudyFV ece δ=δ  (16) 

When mλ>λ 5.0  and 0≥exun  

( ) .1 tudyFV ece δ−=δ  (17) 

 

Figure 1. Calculation of the volume flux through the east-face (e) of the 
donor cell where liquid is under the interface. 

Lagrangian approach is used in [43] to advance the old, reconstructed 
interface with interpolated velocities to a new position and the new 

field-Φ  is deducted from the new interface locations. Here, we apply 

Eulerian techniques, which are mainly divided in two categories: multi-
dimensional or unsplit schemes and one-dimensional or operator split 
schemes. Multi-dimensional schemes require only one reconstruction per 
time step, i.e., a full multi-dimensional solution is updated in a single 
time step. They are more complex because boundary fluxes depend on 
fluxes calculated along each coordinate direction. Examples of multi-
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dimensional algorithms can be found in [44]. Split schemes, on the other 
hand, construct the multi-dimensional solution as a series of sequential, 
one-dimensional sweeps. 
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where the advected volume fractions during a time step through east or 
west cell face ( north or south) are given by 
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2.5.2. Coupling of implicit and explicit time methods 

In this section, we propose our coupling method. Here, the 
momentum equations are solved implicitly. It is well known that time 
step for implicit scheme is unconstrained, that is, the scheme is 
unconditionally stable for reasonable large value of time step. In most of 
computational fluid codes, same time step is used to solve interface 
function equation, which may take too time to converge. In this paper, as 
well as in [45] and [46], a scheme in which the momentum equations are 
solved implicitly while interface equation is solved explicitly, so this 
means that , we use two different time steps such that 

,ei tt δ=δ k  (22) 

where k  could be a relative large integer of order itδ;1000  and etδ  are, 

respectively, in implicit and explicit time steps. 
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In the Figure 2(b), we can see that for one large time step to solve the 
momentum equations, the explicit time scheme used to solve the VOF 
method requires k  loops. The main drawback of the implicit method is 
that it may take several minutes to converge over a loop. Although large 
time step can be used in implicit time scheme, the computational time 
would be too large when it is applied both for momentum and VOF 
equations. On the other hand, explicit time scheme requires no iteration, 
but time step must be relatively small in order to satisfy Courant-
Friedrichs-Lewy criterion. That can lead to large computational time 
when both equations are solved by using explicit time scheme. In order to 
reduce computational time, we propose to combine the two schemes. 

For the numerical results in this paper, several values of time steps 
as well as two-dimensional structured meshes have been tested. It is 
shown in this paper that using this new approach, the computational 
time is considerably reduced and the domain volume is conserved. 
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(a) 

 

(b) 

Figure 2. (a) Usual approach which uses the same time step both for all 
equations; (b) new implicit-explicit coupling method proposed here. 
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3. Numerical Results 

Sloshing tank 

The sloshing of the liquid can increase the dynamic pressure on the 
tank sides and bottom, so that the integrity of the tank is put at risk. An 
example is a ship carrying liquid cargo where sloshing can be critical in a 
partially filled tank. Another example is the case when the satellites 
start to accelerate for course corrections; the onboard fuel starts to slosh 
inducing a force and torque. This interaction between the motion of the 
satellite and the onboard sloshing liquid can have undesirable 
consequences as happened quite recently (1998) with NASA’s Near Earth 
Asteroid Rendezvous (NEAR) craft, which was on its way to the asteroid 
433 Eros, Jeroen Gerrrits [44]. In this test, a rectangular tank with fluid 
inside is initially at rest state. The tank is suddenly accelerated along the 
horizontal x-direction in a sinusoidal large-amplitude. The position of the 
tank is given by 

( ) .and2sin CteytTAx ==π= k  (23) 

The inertial body force is given by ρρ−= where,xVFi  is the density of 

the fluid, V is the volume of the liquid inside the control volume, and x  is 
the acceleration of the governing coordinate system, which is given by 

( ).2sin2 tTAwx π−=   (24) 

Equation (2) includes inertial force caused by movement of liquid in the 
partially filled tank. We have 
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where 

( ).0,0,xfi =   (26) 

For the first test, we have chosen 1.0=A  and .5.2=T  
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Figure 3. Free surface profile inside the tank submitted to horizontal 
oscillations with amplitude m1.0=A  and period s.5.2=T  
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Figure 3 describes the shape of the free surface inside a rectangular 
tank submitted to horizontal oscillations with amplitude A = 0.1m and 
period T = 2.5s. 

When the tank starts to oscillate, from left to right, the liquid starts 
to flow from right to left due to inertia force. At time s,58.0=t  the 
direction of the flow is inverted, that is the first wave moves from left to 
right. At time s,12.1=t  a second wave moves in the same direction as 
the first one where they merge near the right wall, increasing the height 
on this wall at time .s78.1=t  This sloshing of the liquid inside the tank 
continues taking any arbitrary shape as shown in next instants. 
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Figure 4. Velocity field. 

Velocity vectors near the interface are shown in Figure 4. At instant     
s,36.4=t we can observe an air bubble. This is due to the fact that 

around this zone, some velocity vectors below are oriented to the left 
while some others above are directed to the right. The merging of these 
two flows gives the air bubble. 
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volume fraction      t = 1.6s       pressure 
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volume fraction      t = 2.68s       pressure 

Figure 5. Evolution of the interface due to horizontal excitation. 
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Pressure field on the bottom of the tank is shown in Figure 5. The 
pressure is greater on a corner when the mean wave collapses on the 
corresponding vertical side. 

 

Figure 6. Movement of the interface point along the right vertical wall. 

Figure 6 shows height evolution of a free surface along the right wall. 
Initially the height is 0.6m. When the tank starts to oscillate horizontally 
from right to left, the liquid start to slosh from left to right due to inertial 
force, thus height increases. When the sloshing frequency approaches the 
tank frequency, the height along the wall becomes greater and vice versa. 

In a next paper attention will be dedicated to this phenomena. 

4. Conclusion 

An implicit-explicit time scheme coupling has been presented and 
evaluated. The classical sloshing tank two-dimensional problem has been 
used to evaluate the computer code. The numerical results are shown to 
be in good agreement with other results reported in the open literature.  
It is shown that computational time is reduced with the coupling method. 
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